A convolution measure algebra on the unit disc
نویسندگان
چکیده
منابع مشابه
The Raikov Convolution Measure Algebra
What follows is propaganda for the study of a particular commutative Banach algebra, A one not inappropriate to a conference which emphasises automatic continuity. In fact A is that subalgebra of the measure algebra, .i\J(T), of all regular bounded Borel measures on the circle under the total variation norm and convolution multiplication, which is characterised by the automatic continuity of me...
متن کاملWeighted Convolution Measure Algebras Characterized by Convolution Algebras
The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.
متن کاملweighted convolution measure algebras characterized by convolution algebras
the weighted semigroup algebra mb (s, w) is studied via its identification with mb (s) together with a weighted algebra product *w so that (mb (s, w), *) is isometrically isomorphic to (mb (s), *w). this identification enables us to study the relation between regularity and amenability of mb (s, w) and mb (s), and improve some old results from discrete to general case.
متن کاملCompleteness of S4 with Respect to the Lebesgue Measure Algebra Based on the Unit Interval
We prove completeness of the propositional modal logic S4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and ♦. Propositional modal formulae are assigned to Lebesgue-me...
متن کاملalgebra and wreath product convolution
We present a group theoretic construction of the Virasoro algebra in the framework of wreath products. This can be regarded as a counterpart of a geometric construction of Lehn in the theory of Hilbert schemes of points on a surface. Introduction It is by now well known that a direct sum ⊕ n≥0R(Sn) of the Grothendieck rings of symmetric groups Sn can be identified with the Fock space of the Hei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1976
ISSN: 0040-8735
DOI: 10.2748/tmj/1178240884